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Abstract 23 

High spatial resolution soil moisture information is important for hydrological, climatic and 24 

agricultural applications. The lack of high resolution soil moisture data over large areas at the 25 

required accuracy is a major impediment for such applications. This study investigates the 26 

feasibility of downscaling satellite soil moisture products to 1 km resolution. This study was 27 

undertaken in the semi-arid Goulburn River Catchment, located in south-eastern Australia. The 28 

Soil Moisture Active Passive (SMAP)-Enhanced 9 km (L3SMP-E) and Soil Moisture and 29 

Ocean Salinity (SMOS) 25 km gridded (SMOS CATDS L3 SM 3-DAY) radiometric products 30 

were compared with in-situ soil moisture observations and a regression tree model was 31 

developed for downscaling based on thermal inertia theory. Observations from a long-term soil 32 

moisture monitoring network were employed to develop a regression tree model between the 33 

diurnal temperature difference and the daily mean soil moisture for soils with different clay 34 

content and vegetation greenness. Moderate-resolution Imaging Spectroradiometer (MODIS) 35 

land surface temperatures were used to estimate the soil moisture at high spatial resolution by 36 

disaggregating the satellite soil moisture products through the regression model. The 37 

downscaled SMAP-Enhanced 9 km and SMOS 25 km gridded soil moisture products showed 38 

unbiased root mean square errors (ubRMSE) of 0.07 and 0.05 cm3/cm3, respectively, against 39 

the in-situ data. These ubRMSEs include errors caused by measuring instrument and the scale 40 

mismatch between downscaled products and in-situ data.  An RMSE of 0.07 cm3/cm3 was 41 

observed when comparing the downscaled soil moisture against the passive airborne L-band 42 

retrievals. The findings here auger well for the use of satellite remote sensing for the assessment 43 

of high resolution soil moisture.   44 

 45 

Keywords: Downscaling; disaggregation; soil moisture; SMAP; SMOS; MODIS 46 
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1. Introduction 47 

Soil moisture is a key variable in a number of environmental processes at both regional and 48 

global scales including hydrologic, climatic and agricultural applications, such as water 49 

management and irrigation scheduling (Hanson et al., 2000; Pacheco et al., 2015), weather and 50 

climatic prediction (Dirmeyer et al., 2016; Huszar et al., 1999; Orth and Seneviratne, 2014), 51 

drought monitoring (Lorenz et al., 2017; Pablos et al., 2017; Wang et al., 2011), flood 52 

forecasting (Brocca et al., 2017; Lacava et al., 2005; Norbiato et al., 2008; Tramblay et al., 53 

2010) and analysing nutrient and contaminant transport potential (Dickinson et al., 2002; 54 

Porporato and Rodriguez-Iturbe, 2002). Many of these applications require soil moisture data 55 

at high spatial resolution, from a few kilometres to sub-kilometre scale. However, soil moisture 56 

information is rarely available at adequate spatial and temporal scales. Soil moisture is 57 

measured at scales ranging from point (in-situ measurements) to satellite measurements at ~10s 58 

of km scale. Given the limited availability of dense ground-based soil moisture monitoring 59 

networks in most areas, satellite soil moisture products are considered a most feasible option 60 

to provide spatial and temporal soil moisture data.   61 

Microwave remote sensing has been widely used to estimate global scale surface soil 62 

moisture over the last three decades (Karthikeyan et al., 2017a; Kerr et al., 2016; Schmugge 63 

and Jackson, 1993; Schmugge, 1976). In particular, passive microwave radiometer 64 

measurements in the L-band frequency regime have been shown to be the best option to retrieve 65 

soil moisture (Schmugge et al., 1986). Recently, satellite soil moisture retrieval from L-band 66 

sensors has been realized with the launch of the European Space Agency’s (ESA) SMOS (Soil 67 

Moisture and Ocean Salinity) and the National Aeronautics and Space Administration’s 68 

(NASA) Soil Moisture Active Passive (SMAP) satellites in 2009 and 2015, respectively.  These 69 

satellites provide global estimates of surface soil moisture at the top ~5 cm of the soil profile 70 

(Entekhabi et al., 2010a; Karthikeyan et al., 2017b; Kerr et al., 2010) frequently (~3-day revisit 71 

https://www.sciencedirect.com/science/article/pii/S0034425717300329#bb0345
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period) at an expected accuracy of 0.04 v/v, but with low spatial resolution (~40 km).  SMAP 72 

employs vertically polarized brightness temperature-based single-channel algorithm (SCA-V) 73 

as the current baseline retrieval algorithm for its passive soil moisture product (Chan et al., 74 

2018). The L-band Microwave Emission of the Biosphere Model (L-MEB) is currently used 75 

as the retrieval algorithm for the SMOS products (Kerr et al., 2012; Wigneron et al., 2007). 76 

Despite their high accuracy, the satellite products cannot fully capture the spatial variability of 77 

soil moisture as required in many applications, due to their coarse resolutions.  78 

Validating and downscaling satellite soil moisture products are crucial for their 79 

utilization in various applications. For example, extensive calibration and validation (cal/val) 80 

activities pre- and post-launch of SMAP have been used to develop and improve the retrieval 81 

algorithms using in-situ soil network measurements (Jackson et al., 2014). The quality 82 

requirement of in-situ data, and the spatial mismatching between remotely sensed and in-situ 83 

soil moisture, posed great challenges for the validation of satellite soil moisture products 84 

(Colliander et al., 2017a; Crow et al., 2012; Jackson et al., 2014). The intensive cal/val phase 85 

of the SMAP mission demonstrated the SMAP radiometer based soil moisture products meet 86 

their expected performance (~0.04 m3/m3) from globally selected core validation sites 87 

(Colliander et al., 2017a).  88 

Given the accuracy of passive L-band microwave remote sensing, downscaling these 89 

reliable satellite soil moisture products is a logical step to estimate soil moisture at the required 90 

spatial resolution for many applications (Peng et al., 2017; Sabaghy et al., 2018). The available 91 

satellite soil moisture downscaling methods can be classified as; satellite, geo-information data, 92 

and model based approaches (Peng et al., 2017). Satellite based soil moisture downscaling 93 

methods consist of fusion of active and passive microwave retrievals (Das et al,, 2011; Das et 94 

al., 2014; Das et al., 2018; Leroux et al., 2012) and fusion of microwave data with optical or 95 

thermal datasets (Piles et al., 2014; Piles et al., 2016; Portal et al., 2018; Sánchez-Ruiz et al., 96 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016WR019967#wrcr22568-bib-0026
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016WR019967#wrcr22568-bib-0017
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016WR019967#wrcr22568-bib-0026
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2014; Piles et al., 2011; Chauhan et al., 2003). The downscaled soil moisture of the active 97 

passive microwave data fusion methods provides products with a moderate resolution. Since 98 

Carlson et al. (1994) introduced the 'universal triangle' concept between soil moisture, surface 99 

temperature and vegetation index, efforts have been made to downscale satellite soil moisture 100 

products by introducing optical/thermal data. Optical/thermal based downscaling approaches 101 

provide higher resolution soil moisture products and perform well in arid and semi-arid areas 102 

with high atmospheric evaporative demand (Peng et al., 2017). Therefore, these methods have 103 

a high potential over the Australian land mass in developing a time series record of high 104 

resolution soil moisture. In these approaches, land surface parameters (e.g., vegetation cover, 105 

land surface temperature, surface albedo) retrieved from the optical/thermal satellite sensors at 106 

a high spatial resolution, have been expressed as a function of soil moisture (Carlson, 2007; 107 

Chauhan et al., 2003; Merlin et al., 2010 and 2012; Peng et al., 2017; Petropolous et al., 2009; 108 

Piles et al., 2011). The Disaggregation based on Physical And Theoretical scale Change 109 

(DisPATCh) model proposed by Merlin et al. (2012) is one such method of downscaling 110 

microwave soil moisture retrievals using optical/thermal data. In this study, MODerate-111 

resolution Imaging Spectroradiometer (MODIS) products were used to derive land surface 112 

temperatures (LSTs) at high spatial resolution (1 km). The MODIS-derived LSTs were 113 

separated into their soil and vegetation components as in the ‘universal triangle’ or 'trapezoidal 114 

model'. The soil evaporative efficiency (SEE) (estimated using MODIS LSTs), albedo, and 115 

Normalized Difference Vegetation Index (NDVI) were related to the soil moisture variability 116 

within a coarse resolution SMOS pixel (Merlin et al., 2008, 2010, 2012).  The accuracy of the 117 

downscaled products from DisPATCh showed a notable variation with the season, showing 118 

root mean square errors (RMSEs) of 0.06 m3/m3 in Austral summer and 0.18 m3/m3 in Austral 119 

winter when compared with the in-situ soil moisture, in the Murrumbidgee River catchment 120 

(Merlin et al., 2012; Sabaghy et al., 2018).   121 
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Fang et al. (2013) and Fang and Lakshmi (2014) proposed a regression model to downscale 122 

the SMOS and the Advanced Microwave Scanning Radiometer for the Earth Observing System 123 

(AMSR-E) soil moisture products. This downscaling approach is based on the thermal inertia 124 

relationship between the diurnal soil temperature difference (ΔT) and the daily mean soil 125 

moisture (θμ). Model derived soil moisture and soil temperature estimates from North 126 

American Land Data Assimilation System (NLDAS), NDVI data from MODIS, Satellite Pour 127 

l’Observation de la Terre (SPOT) and Advanced Very High Resolution Radiometer (AVHRR) 128 

along with the MODIS LST products were used to demonstrate the capability of the proposed 129 

downscaling model over Oklahoma, Midwest region of the United States. The downscaled soil 130 

moisture showed RMSEs ranging from 0.02 to 0.06 m3/m3 over the Little Washita Watershed 131 

in Oklahoma (Fang and Lakshmi, 2014), and unbiased RMSEs (ubRMSE) of 0.042 m3/m3 and 132 

0.026 m3/m3 against ground observations from the soil monitoring networks (Fang et al., 2013). 133 

The spatial data gaps due to cloud cover and impact of vegetation on optical/thermal 134 

observations are two major limitations in the optical/thermal data based downscaling methods 135 

(Peng et al., 2017; Sabaghy et al., 2018). 136 

The study presented in this paper investigates the feasibility of developing a time series 137 

record of high spatial resolution soil moisture by downscaling satellite soil moisture products 138 

using an in-situ data based model. The regression tree method developed here is similar to Fang 139 

et al. (2013, 2018) and Fang and Lakshmi (2014), but based on in-situ observations with 140 

additional factors.  Fang et al. (2013) and Fang and Lakshmi (2014) developed monthly lookup 141 

regressions using model derived ΔT and θμ modulated by the NDVI, and then used this 142 

regression tree method to downscale AMSR-E and SMOS soil moisture products using MODIS 143 

LSTs.  Since global scale land surface models are not fully calibrated to specific sites, these 144 

products can be associated with high uncertainties caused by scaling issues, accuracy of the 145 

input data and the model-algorithms (Chen et al., 2014). For arid or semi-arid landscapes with 146 
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the extreme climate variability and the complex ecosystem, global land surface modelled data 147 

can be subjected to high prediction errors and they may not be reliable reference data for 148 

representing actual soil conditions without rigorous calibration and validation. To avoid the 149 

uncertainties and errors associated with the model-derived estimates, the study presented here 150 

employed a high quality, reliable in-situ observations of soil moisture and temperature over a 151 

long period from well-designed and maintained monitoring sites (described in section 2.2.1) to 152 

develop the downscaling model. Also, the downscaling model was generalized over the study 153 

catchment area, i.e., relative soil moisture variability to mean catchment soil moisture 154 

condition, considering site-specific soil characteristics as a modulating factor to explain the 155 

spatial variability and temporal stability of surface soil moisture in a semi-arid region (Cosh et 156 

al., 2008; Chen et al., 2014).  157 

As the first step, SMAP-Enhanced 9 km and SMOS 25 km gridded soil moisture 158 

products were compared with in-situ soil moisture observations and then a regression tree 159 

model was developed to downscale the satellite soil moisture products to 1 km resolution based 160 

on thermal inertia theory. Finally, the reliability of the downscaled products was assessed using 161 

ground observations and an airborne soil moisture retrieval.  The study presented in this paper 162 

was undertaken in the Goulburn River Catchment, located in the south-eastern region of 163 

Australia, where significant efforts have been made to measure soil moisture through 164 

continuous in-situ soil moisture monitoring network, field-based studies, and remote sensing 165 

(Chen et al., 2014; Martinez et al., 2007; Panciera et al., 2008; Rüdiger et al., 2007).    166 

 167 

 168 

 169 

 170 
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Fig. 1 

Fig. 2 

2.  Study area and data 171 

2.1. Description of the study area  172 

The Goulburn River catchment is located approximately 150 km northwest of Sydney, 173 

extending from 31 ̊ 46 ̍ S to 32 ̊ 51 ̍ S and from 149 ̊ 40 ̍ E to 150 ̊ 36 ̍ E (Fig. 1).  The Goulburn 174 

River is a tributary of the Hunter River in south-eastern Australia.  The catchment size is ~7000 175 

km2 and its elevation varies from 100 m on the floodplains to 1300 m in the northern and 176 

southern mountain ranges. The northern and southern halves of the catchment can be 177 

distinguished both geologically and on the basis of land use/land cover. The northern half of 178 

the catchment is dominated with basalt derived soils while the southern part is dominated with 179 

sandstone, conglomerate and shale derived soils. The northern part has been cleared mainly for 180 

cropping and grazing, whereas the southern part consists of dense vegetation with forests. The 181 

distribution of clay, silt and sand contents of the top soils in the catchment is shown in Fig. 2. 182 

The area exhibits a semi-arid climate with a mean annual precipitation of 700 mm.  However, 183 

the study catchment shows an increasing gradient in precipitation towards higher altitudes 184 

resulting in a range from 500 mm to 1100 mm. The monthly mean temperatures vary from 16 ̊ 185 

C to 30 ̊ C in the summer and from 3 ̊ C to 17 ̊ C in the winter (Rüdiger et al., 2003). This region 186 

has experienced a range of climatic events during the last 15 years, including the millennium 187 

drought from 2001 to 2009 (Van Dijk et al., 2013), strong La Niña conditions in 2010/11 188 

(Boening et al., 2012) and an extreme storm event with a 100-year return period (Pasha Bulker 189 

storm) in 2007 (Mills et al., 2010).  190 

The study site has been thoroughly studied in order to develop a better understanding 191 

of the land surface processes driving soil moisture variability.  Under the Scaling and 192 

Assimilation of Soil Moisture and Streamflow (SASMAS) project, the study site has been 193 

heavily instrumented for soil moisture, rainfall, and runoff since 2002 (Rüdiger et al., 2007). 194 

The monitoring stations were established to provide in-situ data to validate AMSR-E soil 195 
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Fig. 3 

Table 1 

Fig. 4 

moisture retrievals, develop downscaling algorithms for coarse resolution satellite soil 196 

moisture products, assimilate remotely sensed soil moisture data to retrieve soil moisture 197 

profile and to improve streamflow forecasting (Rüdiger et al., 2003).   National Airborne Field 198 

Experiment 2005 (NAFE’05) airborne campaign was conducted in this area using L-band 199 

radiometers to provide simulated SMOS observations for soil moisture while validating the 200 

AMSR-E near-surface soil moisture products (Panciera et al., 2008).  201 

This study is focused on two sub-catchments, the Krui (562 km2) and Merriwa (651 202 

km2) River, located in the northern half of the Goulburn River catchment. These sub-203 

catchments include a dense soil moisture monitoring network (Fig. 1) and have been mostly 204 

cleared for cropping and grazing (Fig. 3a). Figure 3b shows the average seasonal vegetation 205 

density in 2015 as inferred by the MODIS NDVI composites over these two sub-catchments. 206 

The dense vegetation in the north and south-most parts of the two sub-catchments is evident in 207 

Fig. 3b. The temporal dynamics of NDVI in the Krui River catchment SASMAS monitoring 208 

stations retrieved from the MODIS 16-day NDVI composites are shown in Fig. 4. A high 209 

variability of NDVI can be observed at stations in croplands (i.e. K1 and K3), compared to the 210 

other stations which are in grazing areas. K6 shows a consistently high NDVI value, possibly 211 

due to the high vegetation growth driven by the higher rainfall.  212 

 213 

2.2. Data 214 

This section discusses details on in-situ soil moisture observations, the satellite soil moisture 215 

products, and other geospatial data used for developing the downscaling algorithm. Table 1 216 

provides a summary of the datasets used in this study. 217 

 218 

 219 

http://wwwghcc.msfc.nasa.gov/AMSR/
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2.2.1. In-situ soil moisture observations  220 

Twenty-six soil moisture and temperature monitoring stations were established from 2002 221 

over the Goulburn River catchment under the SASMAS project 222 

(http://www.eng.newcastle.edu.au/sasmas/SASMAS/sasmas.htm). The SASMAS soil 223 

moisture monitoring stations were established in the representative, ‘time stable’ locations of 224 

their surrounding landscape, so that they could adequately represent the watershed as whole 225 

and the footprint scale radiometric satellite soil moisture products after upscaling (Grayson and 226 

Western, 1998; Rüdiger et al., 2003; Rüdiger et al., 2007; Crow et al., 2012). These sites were 227 

carefully chosen by selecting mid-slope locations with representative vegetation, soil type, 228 

elevation, aspect, etc. (Rüdiger et al., 2003; Rüdiger et al., 2007). During the NAFE'05, an 229 

intensive field campaign had been carried out to support the L-band airborne soil moisture 230 

observations. This ground sampling had been conducted from very high resolutions (6.25 and 231 

12.5 m spacing) to intermediate resolutions from 125 m to 250 m spacing and coarse 232 

resolutions from 500 m and/or 1 km spacing. The NAFE’05 data analysis showed the potential 233 

of using the SASMAS dataset to validate coarse resolution satellite soil moisture products such 234 

as SMOS over the Goulburn River catchment area (Panciera et al., 2008). The sites have been 235 

instrumented with three vertically inserted Campbell Scientific CS616 water content 236 

reflectometers at soil depths of 0-30, 30-60 and 60-90 cm, at each station. Stevens Water 237 

HydraProbes were later installed to measure soil temperature at 25 mm and soil moisture of 238 

the top 5 cm soil layer at the monitoring stations (Rüdiger et al., 2007). Six monitoring stations 239 

were established in the Krui River catchment (K1 to K6) and seven in the Merriwa River 240 

catchment (M1 to M7). In addition, seven monitoring stations (S1 to S7) were established over 241 

a densely monitored micro-catchment, “Stanley” (with a catchment size of 175 ha) located 242 

within the Krui River catchment (Martinez et al., 2007) (Fig. 1). These monitoring stations are 243 

located over a range of soil types, varying from sandy to clayey soils. The land cover and soil 244 
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Table 2 

texture of the SASMAS stations in the Krui and Merriwa River catchments are shown in Table 245 

2. The in-situ soil moisture data were measured at 1 min interval and averaged using 20 min 246 

time window. The SASMAS dataset is available from 2003 to 2015, but contains a number of 247 

data gaps. These data gaps are caused mainly due to failure of sensors/telemetry, and erroneous 248 

readings caused by extremely dry weather conditions that resulted in soil cracking, especially 249 

dominate in the clay soils in the northern parts of the sub-catchments. Erroneous readings were 250 

recorded at some of the stations during this time due to sensors not remaining in contact with 251 

soils during dry periods and the cracks getting filled with water during wet periods.  The 252 

SASMAS datasets are available up to 2015. The daily mean soil moisture data and hourly soil 253 

temperature data of the 0-5 cm soil profile from 2003 to 2014 were employed in this study to 254 

develop the regression algorithms. The daily mean soil moisture data in 2015 from the Krui, 255 

Merriwa and Stanley stations were employed in the validation of satellite and downscaled soil 256 

moisture products (details discussed in Section 3).  257 

 258 

2.2.2. Satellite soil moisture products  259 

The ESA’s SMOS mission launched in 2009 (Barré et al., 2008; Kerr et al., 2010) and the 260 

NASA’s SMAP launched in 2015 (Chan et al., 2016; Entekhabi et al., 2010a) are two L-band 261 

missions which use 1.4 GHz radiometer frequencies with approximately 3-day revisit times. 262 

Both SMAP and SMOS provide near surface soil moisture (~0-5 cm) based on the L-band 263 

penetration depth. One major objective of the SMAP mission was to fuse the coarse resolution 264 

(~40 km) radiometric measurements with fine resolution (1-3 km) radar measurements (1.26 265 

GHz) to produce soil moisture products at intermediate resolution (9 km) (Entekhabi et al., 266 

2014). However, only the radiometric soil moisture products of SMAP are available following 267 

the failure of the SMAP radar on 7th July 2015. SMAP radar-based products are available for 268 

the first three months prior to the failure involving its high-power amplifier (HPA) (Neeck, 269 
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Fig. 5 

2015). Combining Sentinel-1 radar data with SMAP radiometric data is an approach employed 270 

as a solution to the SMAP radar failure (Das and Dunbar, 2018). The target accuracy of both 271 

SMAP and SMOS is 0.04 cm3/cm3. The accuracy of SMAP derived soil moisture has been 272 

demonstrated as 0.04 cm3/cm3 for both 36 km and 9 km gridded products (Chan et al., 2016; 273 

Chan et al., 2017; Colliander et al., 2017a). SMOS has demonstrated its expected accuracy of 274 

0.04 m3/m3 at some of the sites (Al Bitar et al., 2012; Jackson et al., 2012). However, higher 275 

uncertainties in SMOS products have been observed in a number of other studies (Djamai et 276 

al., 2015; Pacheco et al., 2015; Niclòs et al., 2016). Despite their identical L-band frequencies 277 

and spatial and temporal resolutions, there are notable differences between SMAP and SMOS. 278 

SMOS measures surface emissions from a large number of view angles from 0 to 55  ̊whereas 279 

SMAP measures surface emissions only at a 40 ̊ angle (Entekhabi et al., 2014; Karthikeyan et 280 

al., 2017b). Moreover, SMAP measures brightness temperatures with a better sensitivity with 281 

a noise-equivalent delta temperature (NEDT) < 1 K for 17-ms samples (Piepmeier et al., 2017) 282 

compared to SMOS, which has a sensitivity of ~2-4.5 K (Corbella et al., 2011). Furthermore, 283 

the SMAP and SMOS soil moisture products use different retrieval algorithms, model 284 

parameters, some of the ancillary datasets (e.g. land cover maps) and assumptions (Al-Yaari et 285 

al., 2017; Karthikeyan et al., 2017b).  286 

For downscaling, two different satellite products have been used in this study (Fig. 5).  First, 287 

the SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 2 288 

(L3SMP-E) products over the Goulburn River catchment from April 2015 to September 2016 289 

were obtained from the National Snow and Ice Data Center (NSIDC) (http://nsidc.org/). Here, 290 

Backus-Gilbert optimal interpolation techniques, the classical inversion method in microwave 291 

radiometry (Chaubell et al., 2016), have been used to retrieve maximum information from 292 

SMAP antenna temperatures and then converted into brightness temperatures (Chan et al., 293 

2018; O'Neill et al., 2016). This interpolation process allows the preservation of the spatial 294 
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resolution of the antenna gain function associated with the sampled radiometer data (Poe, 295 

1990). The brightness temperatures have been resampled onto the 9-km Equal-Area Scalable 296 

Earth Grid, Version 2.0 (EASE-Grid 2.0) in a global cylindrical projection. Herein this dataset 297 

will be called as SMAP-E. The SMAP-E 9 km grid over the study area is shown in Fig. 5b. 298 

Secondly, the SMOS CATDS L3 SM 3-DAY, Release 4 soil moisture products (Product code: 299 

MIR_CLF33A and MIR_CLF33D) of 25 km grid size (CATDS, 2016; Al Bitar et al., 2017) 300 

were obtained from the Centre Aval de Traitement des Données SMOS (CATDS) 301 

(https://www.catds.fr). The CATDS Level 3 soil moisture products include daily ascending 302 

and descending multi-orbit retrievals, and their average was taken as the daily mean soil 303 

moisture in this study. The SMOS 3-day aggregation generates global L3 soil moisture on a 3-304 

day sliding window at daily basis by performing a temporal aggregation of the L3 CATDS 305 

daily product. The soil moisture retrievals were resampled onto a 25-km Global Equal-Area 306 

Scalable Earth Grid (EASE grid) (Kerr et al., 2013). The SMOS 25 km grid is shown in Fig. 307 

5c. It is noteworthy to mention that the spatial resolutions of the SMAP and SMOS soil 308 

moisture products stated in this article, i.e. SMAP-E 9 km and SMOS 25 km, are their grid 309 

posting resolutions, not the actual observation resolutions.  310 

 311 

2.3. Other geospatial data  312 

2.3.1. MODIS-derived NDVI and LST products 313 

NDVI data over the Krui and Merriwa River catchments from 2003 to 2015 were 314 

obtained from MODIS/Aqua Vegetation Indices 16-Day L3 Global 1 km Grid V005 315 

(MYD13A2) products (Didan, 2015) in order to classify the downscaling model based on 316 

different NDVI classes. MODIS/Aqua Land Surface Temperature and Emissivity (LST/E) 317 

Daily L3 Global 1 km Grid V006 (MYD11A1) (Wan et al., 2015) dataset (1 km spatial 318 
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resolution) was used in this study to derive daily night and day time LSTs over the Krui and 319 

Merriwa River catchments in 2015 and for the period of NAFE’05 (in 2005).  320 

 321 

2.3.2. Soil and Landscape Grid National Soil Attributes Maps 322 

The clay content in the 0-50 mm soil profile over the Krui and Merriwa River 323 

catchments was extracted from the National Soil Attributes Maps of the Soil and Landscape 324 

Grid of Australia (Grundy et al., 2015). This is a new soils database for Australia released in 325 

late 2014, as a part of the GlobalSoilMap initiative. It provides quantitative soil properties on 326 

a 90 m grid for all of Australia.  The Australian site data and spectroscopic estimates were used 327 

to develop the Soil and Landscape Grid dataset. The site data had been collected from 1931 to 328 

2013 by the state and territory government agencies and Commonwealth Scientific and 329 

Industrial Research Organisation's (CSIRO) National Soil Archive and National Soil Database 330 

(NatSoil) to develop the National Soil Site Data Collection (NSSDC). The spectroscopic 331 

estimates were made with the National soil visible-near infrared database (NSVNIRD) to 332 

estimate soil properties, by using the soil samples collected for the National Geochemical 333 

Survey of Australia (Rossel et al., 2015). The clay content at 0-5 cm soil profile was used in 334 

this study for the regression tree as a modulating parameter of ΔT-θμ relationship. Data from 335 

15192 NSSDC sites and 1113 NSVNIRD sites were used to develop the clay content maps in 336 

the Soil and Landscape Grid of Australia (Rossel et al., 2015). The uncertainties of the clay 337 

content of the top 5 cm soil layer is 18.5% with 14.1% and 23.0% at lower and upper 90% 338 

confidence limits, respectively (Rossel et al., 2015). The dataset was obtained from the 339 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) data access portal 340 

(https://data.csiro.au). 341 

 342 
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2.3.3. NAFE’05 airborne dataset  343 

Soil moisture retrievals from the NAFE'05 (Panciera et al., 2008) were used in this 344 

study to validate the downscaling algorithms. The NAFE'05 was conducted in November 2005 345 

in the Goulburn River catchment to provide simulated SMOS observations from an L-band 346 

radiometer along with the soil moisture and other relevant ground observations. The objectives 347 

of the experiment were to develop the SMOS soil moisture retrieval algorithms, the SMOS 348 

downscaling approaches, and the assimilation of SMOS into land surface models for root zone 349 

soil moisture estimations. The regional airborne data collection was carried out in four 350 

consecutive Mondays starting from 31st October 2005 over a 40 km × 40 km area in the northern 351 

part of the catchment (Fig. 5 a). The long drying period followed by the heavy rainfall on 352 

October 31st and November 1st allowed the NAFE’05 campaign to observe near surface soil 353 

moisture observations ranging from fully-saturated conditions to very dry conditions (Panciera 354 

et al., 2008).  This covered the area cleared for cropping and grazing in the Krui and Merriwa 355 

River catchments where the SASMAS monitoring stations were concentrated, while the south-356 

most part of the NAFE’05 study area included forested areas with dense vegetation. The 357 

Polarimetric L-band Multibeam Radiometer (PLMR) was employed for the regional NAFE'05 358 

airborne data collection. The 1 km NAFE'05 soil moisture products were derived from PLMR 359 

brightness temperatures using a two channel inversion of the L-MEB model (Panciera et al., 360 

2009). Although the nominal ground resolution of the dataset is 1 km, the pixel size varied 361 

from 860 to 1070 m due to the constant altitude of the flights above the median elevation over 362 

the varying terrain. The average flight altitude was 3000 m Above Ground Level (AGL) and 363 

the data was acquired in the morning between 6:00 hrs to 10:00 hrs along north-south orientated 364 

flight lines. Herein the term ‘NAFE’05’ is used in this paper to refer to this regional airborne 365 

campaign.  366 

 367 
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Table 3 

Fig. 6 

3. Methods 368 

The methodology section consists of: (1) evaluation and inter-comparison of SMAP and 369 

SMOS products with in-situ data; (2) developing the regression tree model for downscaling; 370 

and (3) evaluation of the downscaled soil moisture data with SASMAS in-situ and NAFE’05 371 

airborne observations. The overall approach is summarized in the flowchart shown in Fig. 6. 372 

 373 

3.1. Evaluation and inter-comparison of SMAP-E and SMOS soil moisture products with in-374 

situ data 375 

The SASMAS in-situ soil moisture data from the top 5 cm soil profile was employed to 376 

evaluate near surface soil moisture measurements from SMAP-E and SMOS. Fig. 5 shows the 377 

distribution of SMAP-E 9 km and SMOS 25 km grids, as well as the SASMAS in-situ 378 

monitoring stations over the study area. Location details of the pixels used in this evaluation 379 

process are given in Table 3.  The average of available in-situ observations of the top 5 cm over 380 

the SMAP and SMOS satellite foot prints were used in this comparison. Note that the spatial 381 

averaging of limited in-situ observations can also contribute to the potential error in this 382 

comparison. This comparison was conducted over one SMAP-E 9 km pixel (X, Fig. 5b) and 383 

one SMOS 25 km pixel (R, Fig. 5c).  Average soil moisture of three SASMAS monitoring 384 

stations over the nominal 33 km contribution domain (Fig. 5b) of the SMAP-E 9 km pixel X 385 

and two stations on SMOS 25 km pixel R (Fig. 5c) were employed in this comparison (Chan 386 

et al., 2018). Colliander et al. (2018) has employed a similar approach to validate SMAP-E 387 

products with core validation sites. 388 

Then, the SMOS and SMAP-E soil moisture products over the Krui and Merriwa River 389 

catchments in 2015/16 were compared against each other over the four SMOS 25 km pixels, 390 

P, Q, R and S (Fig. 5c) by interpolating SMAP-E soil moisture to the SMOS 25 km grid centres. 391 
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This interpolation of SMAP-E into SMOS grid centres allows to capture a near approximation 392 

of average soil moisture from the actual contributing domain of SMAP-E. 393 

 394 

3.2. Developing the downscaling model  395 

The downscaling method presented in this paper is based on the soil thermal inertia 396 

relationship between ΔT and θμ, which has been demonstrated by Fang et al. (2014, 2018) for 397 

multiple sites in United States. We first discuss the thermal inertia theory, and then present 398 

details on the regression tree model developed for this study.  399 

Thermal inertia is a measure of the resistance of an objects temperature to the changes 400 

in its surrounding temperature (Sellers, 1965). The objects with high thermal inertia show a 401 

lower temperature change compared to the objects with low thermal inertia. Therefore, a low 402 

thermal inertia of soil shows a high variation in the diurnal temperature and vice versa. 403 

Accordingly, the relationship between the thermal inertia (TI) and ΔT can be given as (Engman, 404 

1991): 405 

𝛥𝛥𝛥𝛥 = 𝑓𝑓�1
𝑇𝑇𝑇𝑇� �,          (1) 406 

𝛥𝛥𝛥𝛥 = 𝑇𝑇𝑃𝑃𝑃𝑃 − 𝑇𝑇𝐴𝐴𝐴𝐴 ,           (2) 407 

where TPM  and TAM are the afternoon and early morning soil surface temperatures. 408 

TI can also be defined as (Wang et al., 2010): 409 

𝑇𝑇𝑇𝑇 = �𝜌𝜌𝜌𝜌𝜌𝜌,          (3) 410 

where ρ is the bulk density (kg m-3), k is the specific heat capacity (J kg-1 K-1) and c is the 411 

thermal conductivity (W m−1 K−1) of the material. Water has a high specific heat capacity 412 

compared to the dry soil. Therefore, the thermal inertia of wet soil is significantly higher than 413 
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dry soil and exhibits lower diurnal temperature fluctuation. When the moisture content of the 414 

soil is increasing, the thermal inertia of the soil increases proportionally. Therefore, wet soils 415 

exhibit low diurnal soil temperature difference compared to dry soils (Verstraeten et al., 2006).  416 

The relationship between the diurnal soil temperature difference and the daily mean 417 

soil moisture is complex and modulated by the season, vegetation density and the soil texture 418 

(Engman, 1991; Farrar et al., 1994; Peng et al., 2017; Sandholt et al., 2002).  A regression tree 419 

model was used to represent this complex relationship.  A basic regression tree algorithm 420 

typically produces a set of rules in a decision tree format, which can be used to represent the 421 

correlation between the independent variable and the predictor variables under different 422 

conditions (De'ath and Fabricius, 2000). This approach does not require the assumption of a 423 

globally linear relationship, nor a priori knowledge of the mathematical form of nonlinear curve 424 

fitting methods (Breiman et al., 1984).  425 

The downscaling method employed here is similar to the NLDAS product-based 426 

regression model developed by Fang et al. (2013, 2018) and Fang and Lakshmi (2014), but 427 

with in-situ data and additional factors.  In this study, continuous long term in-situ observations 428 

of soil moisture and temperature were used together with a time series of remotely sensed 429 

NDVI data to develop the regression tree models by season. The in-situ data from the SASMAS 430 

network provided details on surface soil moisture change under different climatic conditions 431 

over the range of soil types.  Soil texture information was also considered in the regression tree 432 

models, given the spatial variation in edaphic characteristics for this semi-arid study site and 433 

its implication for the spatio-temporal surface soil moisture dynamics (Chen et al., 2014; Cosh 434 

et al., 2008).  In particular, a large portion of the study area is covered by vertisols, extensively 435 

swelling soils with high clay content. This type of soil shows large structural and volumetric 436 

changes during wetting, and this directly affects the soil water retention characteristics and near 437 

surface soil moisture (Rüdiger et al., 2005).  The soils were classified into two classes as heavy 438 

https://www.sciencedirect.com/science/article/pii/S003442571300388X#bb0025
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clays (clay content >35%) and other soils (Bonan, 2015). The soil clay content was considered 439 

as a modulating factor based on the effect of soil texture on the thermal conductivity, with 440 

thermal conductivity directly proportional to the thermal inertia (Engman, 1991).  441 

The θμ and ΔT values of the top 5 cm soil profile at each monitoring station were 442 

calculated from the SASMAS in-situ dataset between 2003 and 2014. The ΔT values (ΔT = 443 

LSTAM – LSTPM) were computed by using the LST difference between early morning and 444 

afternoon based on the approximate MODIS Aqua day and night overpass times over the study 445 

area, i.e. 01:30 (LSTAM) and 13:30 hours (LSTPM). The NDVI (Tucker, 1979) was used in the 446 

regression tree model, to account for the impact of vegetation density in modulating soil 447 

temperature and soil moisture. The NDVI is defined as: 448 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)       (4) 449 

where NIR and RED are the reflectance values from infrared and red bands respectively. NDVI 450 

values vary from -1 to +1, with negative values representing water, near zero values no 451 

vegetation cover (e.g., bare lands and urban areas), and values closer to +1 dense vegetation. 452 

Three NDVI classes were defined for the classification of the ΔT - θμ regression model based 453 

on the vegetation density, i.e., NDVI<0.4 (grasslands or no vegetation), 0.4<NDVI<0.6 454 

(abundant and vigorous vegetation), and NDVI>0.6 (dense and vigorous vegetation) (de 455 

Alcântara Silva et al., 2016). The NDVI values at each station over the period of 2003 to 2014 456 

were estimated by using MODIS 16-day NDVI composites (MYD13A2) (1 km resolution).   457 

Lastly, the four Austral seasons, spring (from September to November), summer (from 458 

December to February), autumn (from March to May), and winter (from June to August), were 459 

used to classify the regression tree in view of the seasonal impact to the ΔT-θμ relationship. In 460 

summary, the entire ΔT-θμ regression model was classified into 24 classes, i.e. three NDVI 461 
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Fig. 7 
classes, two soil classes and four seasonal classes. Fig. 7a shows the regression tree developed 462 

for the Austral spring. The regression tree for the other seasons were similarly developed. 463 

The MODIS Aqua LST (MYD11A1) values over the Krui and Merriwa stations showed a 464 

strong linear relationship with the SASMAS observations in 2015 with a R2 value of 0.74 at 465 

day time and 0.76 at night time. The day and night time MODIS Aqua LST (MYD11A1) values 466 

over SASMAS in-situ stations were compared against the top 5 cm SASMAS in-situ soil 467 

temperature values at approximate MODIS overpass times (13:30 hrs at day time and 01:30 468 

hrs at night time). Consequently, MODIS day time and night time LST values were bias 469 

corrected using a linear calibration with the SASMAS observations and subsequently used to 470 

calculate ΔT values at 1 km spatial resolution. The MODIS derived ΔT values were input into 471 

the regression tree to calculate respective θμ estimates at 1 km spatial resolution. The NDVI 472 

and soil clay content values at each 1 km ΔT pixel were extracted from the MODIS 16-day 473 

NDVI composites and the Soil and Landscape Grid National Soil Attributes Maps respectively.  474 

The coarse resolution soil moisture products (θSAT) were thereafter downscaled to 1 km 475 

pixel p (θds, p) as: 476 

𝜃𝜃𝑑𝑑𝑑𝑑,𝑝𝑝 =  𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝 + [𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 −
1
𝑛𝑛
∑ 𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝
𝑛𝑛
1 ] ,      (5) 477 

where θest, p is soil moisture content estimated by the regression tree at the 1 km pixel p, θSAT 478 

the satellite soil moisture product where p is laid within its foot print, and n is the total number 479 

of 1 km pixels (p=1..n) within the coarse resolution satellite pixel.    480 

 481 

3.3. Evaluation of the downscaled products  482 

Evaluation of the downscaled soil moisture products and algorithms consisted of two parts: 483 

(1) assessing the accuracy of the downscaled products against the SASMAS in-situ 484 
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observations during 2015; and (2) evaluating the consistency in spatial patterns between high 485 

resolution L-band airborne soil moisture retrievals and the downscaled soil moisture estimates 486 

derived from the upscaled airborne soil moisture retrievals. 487 

 488 

3.3.1 Validating the downscaled products with SASMAS in-situ observations 489 

The downscaled soil moisture products were compared with the SASMAS in-situ 490 

observations of the top 5 cm soil profile from K3, M6 and S3 stations in 2015. Due to the 491 

limited data availability, only a single station per downscaled pixel was compared; hence, 492 

subgrid-scale spatial variability of soil moisture within a downscaled pixel could not be 493 

assessed. However, in-situ soil moisture observations, albeit the limited availability, were 494 

assumed to be a reasonable representation of downscaled soil moisture products with the 495 

following reasons. First, SASMAS soil moisture monitoring sites are able to represent their 496 

surrounding landscape since they were established at carefully chosen 'time stable' locations 497 

(see Section 2.2.1). It is noteworthy to mention that the intensive field sampling conducted at 498 

the NAFE’05 and the careful positioning of stations supported the potential of using SASMAS 499 

data for upscaling to a large spatial extent to validate coarse resolution satellite soil moisture 500 

products without significant errors (Crow et al., 2012; Panciera et al., 2008; Rüdiger et al., 501 

2003; Rüdiger et al., 2007). Second, subgrid spatial variability within the downscaled pixel 502 

deemed to be rather small. There existed very little difference in environmental factors (e.g., 503 

land cover, vegetation, soil type, topography, meteorological factors) that could contribute to 504 

large uncertainties in soil moisture within the spatial extent of downscaled pixel.  Indeed, a 505 

multiscale analysis by Martinez et al. (2007) demonstrated very little soil moisture variability 506 

at a fine (< 1 km2) spatial scale based on intensive field campaigns conducted in this area during 507 

NAFE’05.  Lastly, Chen et al. (2014) showed the temporal stability of the SASMAS network 508 
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sites using the HYDRUS‐1D soil water model.  The sensitivity analyses revealed soil type and 509 

leaf area index as the key parameters affecting soil moisture variability through time.  The 510 

calibrated model to a single site was able to simulate soil water storage for closely located 511 

monitoring sites as well as for distant sites (up to 30 km) if spatially variable rainfall was 512 

allowed. Chen et al. (2014) demonstrated the potential usefulness of continuous time, point‐513 

scale SASMAS in-situ observations and simulations for predicting the soil wetness status over 514 

a catchment of significant size (up to 1000 km2) across scales. Note that relative metrics (see 515 

Section 3.3.3) were used in this validation process, due to the low density of in-situ soil 516 

moisture monitoring stations. 517 

 518 

3.3.2 Validating the downscaling algorithms using NAFE’05 airborne observations 519 

 One major problem in validating downscaled soil moisture products with sparse in-situ 520 

networks is the large spacing between the monitoring stations. When in-situ observations are 521 

used as reference observation to assess downscaled products, several problems could arise from 522 

resolution cell representation, station-to-station biases, and consistency of data records 523 

(Colliander et al., 2017b). Use of high spatial resolution airborne soil moisture observations as 524 

reference observations has been considered as a robust, alternative approach to validate spatial 525 

downscaling methods (Colliander et al., 2017b; Merlin et al., 2008; Piles et al., 2009; Wu et 526 

al., 2017). Due to unavailable resources, the field experiment to collect a set of high resolution 527 

airborne soil moisture observations could not be conducted during the study period. Instead, 528 

our downscaling algorithms were further tested with the NAFE’05 airborne soil moisture 529 

dataset over the 40 km × 40 km study area covering Krui and Merriwa River catchments as 530 

follows. This is the only high resolution airborne soil moisture dataset available in our study 531 

area. The ~1 km resolution airborne soil moisture data were first upscaled by taking the spatial 532 
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Fig. 8 

mean over the study area to simulate a coarse resolution satellite soil moisture pixel. The 533 

aggregated soil moisture data were then downscaled to 1 km using the developed regression 534 

tree models (Eq. 5) with MODIS-derived NDVI and LST datasets. If the LST datasets had 535 

significant spatial data gaps due to the clouds on the NAFE’05 campaign days, the LST data 536 

prior to or just after the campaign days were used assuming no significant variation in the daily 537 

soil moisture between adjacent dates.  Then, the spatial patterns of the downscaled soil moisture 538 

were compared against the NAFE’05 1 km resolution airborne soil moisture data and the 539 

absolute difference between the two datasets was calculated for each day. The region covered 540 

by the dense vegetation along the southern border of the NAFE’05 study area was masked and 541 

excluded from this analysis (Fig. 8a). The data from 31st October 2005 was not considered in 542 

this comparison due to the large data gaps caused by the cloud cover.  543 

 544 

3.3.3 Performance Metrics 545 

The RMSE, ubRMSE, coefficient of determination (R2), Pearson’s correlation coefficient 546 

(R) and coefficient of variation (CV) were used as metrics in data comparisons. These metrics 547 

are computed as (Entekhabi et al., 2010b; Colliander et al., 2018): 548 

   RMSE = �
∑ �θds,i − θobs,i�

2   n
i=1

n  ,        (6)                              549 

  ubRMSE =�
∑ ��𝜃𝜃𝑑𝑑𝑑𝑑,𝑖𝑖−𝜃𝜃𝑑𝑑𝑑𝑑������� − �𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖−𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜����������

2
   n

i=1
n-1  ,                                          (7) 550 

where θobs,i is the ith value of soil moisture observations (in-situ or airborne) used in these 551 

comparisons as the true values, θds,i the ith value of the downscaled 1 km soil moisture products 552 
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Fig. 9 

and n is the number of observations. 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜������ and 𝜃𝜃𝑑𝑑𝑑𝑑���� are the means of observed and downscaled 553 

soil moisture, respectively.  554 

The R2 value, R and CV are estimated as: 555 

R2 = 1 −  
∑(𝜃𝜃𝑖𝑖−𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖)

2

∑(𝜃𝜃𝑖𝑖−𝜃𝜃�)2
 ,          (8) 556 

R = 1
(𝑛𝑛−1)

∑ (𝜃𝜃𝑑𝑑𝑑𝑑,𝑖𝑖−𝜃𝜃𝑑𝑑𝑑𝑑�����  
𝑠𝑠𝑑𝑑𝑑𝑑

𝑛𝑛
𝑖𝑖=1 )(𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖− 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜������

𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜
) ,                                                                       (9) 557 

CV = s
𝜃𝜃�

 ,          (10) 558 

where θreg,i is the predicted soil moisture from a regression fit between θds and θobs. sds and 559 

sobs are the standard deviations of downscaled and obsereved soil moisture values, 560 

respectively. The standard deviation (s) is estimated by: 561 

s = �∑ �θi - 𝜃𝜃��
2
   n

i=1
n - 1

 .         (11) 562 

Here, θi is the soil moisture estimate at the ith observation (i= 1:n) and 𝜃̅𝜃 is the spatial or 563 

temporal mean of the soil moisture estimates.  564 

 565 

4. Results  566 

4.1. Comparison of coarse resolution satellite soil moisture products  567 

The comparisons between the in-situ observations and satellite soil moisture products are 568 

shown in Fig. 9. Fig. 9a shows the agreement between SMAP-E products and the SASMAS 569 

in-situ data at SMAP-E pixel X (Fig. 5b), along with the daily precipitation measured at the K3 570 

station. The response of SMAP soil moisture to the precipitation is evident in Fig. 9. The 571 
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SMAP-E soil moisture product showed a good agreement with the in-situ data at pixel X 572 

showing an ubRMSE value of 0.051 and R2 values of 0.73 (Fig. 9a). However, a slight 573 

underestimation was observed from the SMAP products when compared with the in-situ data, 574 

particularly during the drying stage. Chen et al. (2017) also explain an underestimation bias in 575 

SMAP data, especially in drying conditions, possibly caused by the mismatch between the 576 

measuring depths of in-situ sensors and L-band penetration depths. The SMOS soil moisture 577 

products showed a notable underestimation when compared against SASMAS in-situ 578 

observations (Fig. 9b) at pixel R (Fig. 5c). The temporal pattern of soil moisture (i.e. 579 

climatology) was reasonably captured by the SMOS products (Fig. 9b). An ubRMSE of 0.056 580 

cm3/cm3 with R2 value of 0.64 was found between SMOS 25 km gridded product and in-situ 581 

data at this pixel.  The limited in-situ observations along with the errors in spatial averaging 582 

and instrument errors in in-situ data were also potential error sources in these comparisons 583 

between satellite soil moisture products and in-situ observations. The underestimation is less 584 

evident in SMAP compared to SMOS soil moisture products. A number of studies have 585 

observed the same behaviour of a general under-estimation with SMOS (Al Bitar et al., 2012; 586 

Dall'Amico et al., 2012; Gherboudj et al., 2012;  Cui et al., 2018; Dente et al., 2012, Pacheco 587 

et al., 2015, Niclòs et al. 2016). Some of the possible reasons for the SMOS underestimation 588 

can be identified as; the L-band penetration depth being less than 5 cm for wet soils (Ulaby et 589 

al., 1986), inability to represent spatial heterogeneity at the coarser resolution, in-situ 590 

measurements overestimating the soil moisture, systematic bias created by the retrieval 591 

algorithm and the erroneous ancillary data such as soil texture and land use (Al Bitar et al., 592 

2012).  The improved instrument design and algorithm of SMAP (Karthikeyan et al., 2017b) 593 

can also contribute to the better accuracy of SMAP.  594 

The comparison between SMOS and SMAP-E soil moisture products over the SMOS 595 

pixels P, Q, R and S shows a reasonably good agreement with RMSEs of 0.089, 0.075, 0.072 596 
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Fig. 10 

Fig. 11 

and 0.072 cm3/cm3 (R2= 0.58, 0.57, 0.69 and 0.68, p-values < 0.001 for all cases) over the 597 

SMOS 25 km pixels P, Q, R and S, respectively (Fig. 10). 598 

 599 

4.2. Development of the downscaling model 600 

The regression fits developed for the class with clay < 35% and 0.4<NDVI<0.6 for Austral 601 

summer and winter are shown in Fig. 7 (i) and (ii). Around 20,000 (ΔT, θμ) data pairs obtained 602 

from ten SASMAS stations from 2003 to 2014 were used to develop the regression tree model, 603 

based on the availability of reliable near surface (0-5 cm) datasets. The large sample size 604 

collected over different climate conditions was sufficient to capture the variability as required 605 

by the regression tree classification.  606 

 607 

4.3. Validating the downscaled products with in-situ data 608 

Fig. 11a shows the comparison of the downscaled soil moisture products of SMAP-E 609 

km, and SMOS, with the in-situ observations at K3, M6, and S3 stations. The top 5 cm soil 610 

moisture data were unavailable at the other SASMAS stations in 2015. Therefore, the only 611 

option was to compare the downscaled data with the available in-situ measurements, although 612 

these three monitoring stations are laid within seperate 1 km pixels. The downscaled soil 613 

moisture estimates of the satellite products, SMAP-E and SMOS, have captured the temporal 614 

variability of soil moisture with a good accuracy at all stations (Fig. 11a). At the M6 monitoring 615 

station, the downscaled products showed a general underestimation compared to the in-situ 616 

record. Lack of spatial representativeness of M6 station and instrument errors can be possible 617 

causes for this mismatch. Fig. 11b shows the agreement between the in-situ data and 618 

downscaled soil moisture estimates of SMAP-E and SMOS products. These downscaled 619 
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Fig. 13 

Fig. 12 

Table 4 

SMAP-E and SMOS soil moisture products showed average ubRMSE values of 0.068 and 620 

0.051 cm3/cm3 (with average R2 values  of 0.40 and 0.61), respectively.  621 

Table 4 shows a summary of the agreement between the SASMAS in-situ observations 622 

and the downscaled soil moisture product at stations K3, M6, and S3. Downscaled SMOS 623 

products show better ubRMSE values and high R2 against in-situ data, compared to the 624 

downscaled SMAP-E products. Fig. 12 illustrates the spatial variability of soil moisture over 625 

the Krui and Merriwa River catchments, as captured by the SMAP-E and SMOS soil moisture 626 

products and their downscaled counterparts on 28th June 2015. This epoch was selected due to 627 

little cloud cover of the MODIS LST scene. When compared to the coarse resolution soil 628 

moisture products, it is evident that the downscale products have captured the sub-catchment 629 

level spatial variability of soil moisture at a much finer scale. It can be seen that the wet pixels 630 

in the middle of the Krui River catchment and the northern half of the Merriwa River catchment 631 

(Fig. 12) are closely related to the clay content of the soils (Fig. 2a). The increasing soil 632 

moisture gradient towards north, driven by the precipitation patterns and soil texture, is visible 633 

in the downscaled products. The subpixel scale spatial patterns of SMOS and SMAP soil 634 

moisture are similar, since these patterns are based on the soil moisture estimates derived from 635 

MODIS LSTs.  636 

 637 

4.4. Validating the downscaling algorithms with the NAFE’05 airborne observations 638 

Fig. 13a shows the distribution of the NAFE’05 soil moisture data of the regional airborne 639 

campaign on 7th November, 14th November and 21st November 2005, with corresponding 640 

downscaled soil moisture estimates. Soil moisture variability of 31st October 2005 was 641 

excluded in this figure due large data gaps caused by clouds. The NAFE’05 regional soil 642 

moisture datasets of the four subsequent campaign days showed spatial means of 0.44, 0.36, 643 

0.16 and 0.14 cm3/cm3 with CVs of 0.32, 0.37, 0.63 and 0.60 respectively over the 40 × 40 km 644 
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Fig. 14 

Table 5 

study area. This clearly showed a drying trend from 7th November to 21st November 2005. 645 

The SMAP-E soil moisture products show a mean value of 0.20 cm3/cm3 (standard deviation 646 

of 0.07 cm3/cm3) over the NAFE’05 study area during 2015 and 2016. The spatial average of 647 

the NAFE soil moisture data in the 40 km × 40 km study area over the 4 days showed a mean 648 

value of 0.27 cm3/cm3 (standard deviation = 0.15 cm3/cm3). This shows that the NAFE’05 data 649 

shows slightly high soil moisture content compared to the soil moisture content as measured 650 

by the SMAP over the two years, yet displaying the typical soil moisture conditions of the area.  651 

The downscaled data showed mean soil moisture values close to the NAFE’05 652 

observations, but with less variability (Fig. 14). The response from the saturated clay soils and 653 

the surface runoff, caused by the early morning precipitation events is a probable reason for 654 

the high variability in NAFE’05 datasets. The SASMAS in-situ data shows precipitation of ~20 655 

mm at S2 on 30th and 31st October 2005. This included light precipitation events (~12 mm) in 656 

the early morning of 31st October, i.e., a couple of hours before the flight time.  This resulted 657 

in wet conditions on 31st October 2005 observed from the NAFE'05 dataset. In addition, the 658 

precipitation events on 31st October 2005 (Table 5) caused large data gaps in the MODIS LST 659 

due to the dense cloud cover on this day. A 12 mm precipitation event was also recorded at S2 660 

on 5th November 2005 which explains the higher mean soil moisture values observed from the 661 

NAFE’05 dataset compared to the average of the SMAP soil moisture products over this area 662 

during 2015/16.  Furthermore, Table 5 shows a general gradient of precipitation towards north 663 

across the NAFE’05 study area. This can be a possible reason for the higher soil moisture 664 

values in the northern part of the NAFE’05 area compared to the southern part. The response 665 

from surface runoff and soil saturation can also be identified as possible reasons for the extreme 666 

wet pixels in the NAFE’05 dataset. 667 

Fig 13 shows a good agreement in the spatial patterns between NAFE’05 data and 668 

downscaled soil moisture products. The lower soil moisture values resulting from the high sand 669 
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content in the southern part of the 40 km × 40 km NAFE’05 area (i.e. the southern parts of the 670 

Krui and Merriwa River catchments) and the high soil moisture values resulting from the high 671 

clay content in the mid-regions of the two sub-catchments (Fig. 8b) were evident in both 672 

downscaled and NAFE’05 maps, especially during the dry conditions on 21st November 2005 673 

(Fig. 13a). This highlights soil texture as a dominant factor regulating spatial patterns of soil 674 

moisture in the study area. This is compatible with the findings of Martinez et al. (2007) at the 675 

Stanley catchment, explaining that the wettest areas of the catchment are dominated by the clay 676 

soils. 677 

The error maps shown in Fig. 13b illustrate the absolute error between observed and 678 

downscaled datasets of the NAFE’05. The two datasets have a reasonable agreement showing 679 

an error < 0.1 cm3/cm3 for more than 80% of the area on 7th and 14th November 2005. Over 680 

95% of the area shows an error less than 0.1 cm3/cm3 on 21st November 2005 under the dry 681 

conditions. Higher error values (> 0.1 cm3/cm3) can be seen in the wetter pixels, possibly 682 

caused by higher precipitation in the northern part of the study area. A better agreement can be 683 

seen between the two datasets with increasing catchment dryness (Fig. 13 and 14). Overall, the 684 

comparison between NAFE’05 and downscaled soil moisture datasets show an average RMSE 685 

of 0.07 cm3/cm3 (with R value of 0.4). 686 

 687 

5. Discussion and conclusion 688 

This paper explored the feasiblity of generating a time record of soil moisture at high spatial 689 

resolution (1 km) using SMAP-E 9 km and SMOS 25 km gridded satellite soil moisture 690 

products over two semi-arid river catchments in the Upper Hunter Region of New South Wales, 691 

Australia. The soil moisture and soil temperature dataset for the top 5 cm soil layer, obtained 692 

from the in-situ soil moisture network (SASMAS) over the Goulburn River catchment, was 693 
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used to develop a thermal inertia based regression tree model between ΔT and θμ. The 694 

regression tree model was classified based on the modulating factors; season, vegetation 695 

density and soil texture. The MODIS LST products were then used to estimate soil moisture at 696 

1 km resolution from the coarse satellite products using the rule-based regression tree model. 697 

The accuracy of the downscaled soil moisture products was evaluated by using the SASMAS 698 

in-situ and the NAFE’05 airborne datasets.  699 

Both SMAP-E and SMOS soil moisture products showed a temporal change consistent 700 

with the precipitation. SMAP-E soil moisture showed an agreement with the in-situ data of 701 

0.051 cm3/cm3 ubRMSE (R2 = 0.73), which is slightly higher than the accepted SMAP accuracy 702 

of 0.04 cm3/cm3. The SMOS 25 km gridded product showed ubRMSE of 0.056 cm3/cm3 (R2 = 703 

0.64) against in-situ data. The unavailability of evenly and densely distributed in-situ stations 704 

over the SMAP-E footprint are a major limitation of this comparison. Beside the measurement 705 

errors from the in-situ sensors (~0.03 cm3/cm3), soil cracking over the clay soils was a serious 706 

issue for the near surface (0-5 cm) soil moisture monitoring. In the dry periods, the cracks 707 

caused sensors to be not in contact with the soils, whereas after precipitation, the soils get 708 

flooded and swelled.  This creates a challenge for maintaining near surface sensors and assuring 709 

the data quality for in-situ observations.  The limited availability of in-situ observations and 710 

the error in spatial averaging of in-situ data over the satellite footprints are the main sources of 711 

errors in this comparison. Because of the limited availability of the top 5 cm soil moisture 712 

observations, Senanayake et al. (2017) tested the proposed downscaling approach with the in-713 

situ data of 0-30 cm soil layer. Soil moisture and temperature data from five Krui River 714 

catchment monitoring stations in 2015 (~1700 data pairs) were employed in this work, based 715 

on the premise that the daily mean of the near surface soil moisture (0-5 cm) was closely related 716 

to the daily mean soil moisture of the 0-30 cm soil layer in the study area (Martinez et al., 717 
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2007). This study showed an RMSE of 0.14 cm3/cm3 when the downscaled data were compared 718 

against the in-situ observations.  719 

The downscaled soil moisture products of the SMAP-E and SMOS showed ubRMSEs of 720 

0.068 and 0.051 cm3/cm3, respectively, with the SASMAS in-situ observations. The accuracy 721 

of the coarse resolution satellite soil moisture products directly affects the accuracy of their 722 

downscaled counterparts. It is noteworthy to mention that, the average of the downscaled soil 723 

moisture products within a coarse resolution satellite footprint was the same as the original 724 

value of the coarse resolution satellite soil moisture product (see Eq.5).  The errors in MODIS 725 

LSTs (Wan, 2008) and the uncertainties in clay content values (Rossel et al., 2015) can also be 726 

identified as possible sources of errors.     727 

Lack of in-situ network sites within 1 km pixel was a major limitation in validating the 728 

downscaled soil moisture products. Therefore, presenting metrics for absolute soil moisture 729 

(i.e. RMSE and bias) is invalid. Accordingly, relative metrics were used in presenting the 730 

results of this validation (i.e. ubRMSE and correlation). In addition, NAFE’05 data was also 731 

used in this study as a solution to lack of ground measurements for validation. The downscaled 732 

soil moisture showed a good agreement with the spatial patterns shown by NAFE'05 airborne 733 

campaign. Both NAFE'05 and downscaled data shows the spatial patterns driven by soil 734 

texture. The clay-rich mid-catchment areas of the Krui and Merriwa River (Fig. 8b) can be 735 

distinguished from the north and south-most regions in the soil moisture maps (Fg.13a). This 736 

agrees with the findings of the previous studies (Cosh et al., 2008; Cantón et al., 2004; Gómez‐737 

Plaza et al, 2000) that have shown soil properties and vegetation as the main factors affecting 738 

soil moisture variability in semi-arid regions. The results show that the algorithms work well 739 

over both spatially and temporally dry conditions compared to wet conditions. Another major 740 

limitation of this downscaling method is the data gaps in MODIS LST occurred due to the 741 

cloud cover. One possible approach to address this problem is by using the LST products from 742 
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geostationary satellites (Oyoshi et al., 2014; Yamamoto and Ishikawa, 2018). Although their 743 

spatial resolution is slightly coarser than MODIS LST products, the high temporal resolution 744 

of the geostationary LST data allows the retrieval of close representations of TAM and TPM. The 745 

4 km spatial and one-hour temporal resolution of Multi-functional Transport Satellite 746 

(MTSAT)-1R (Himawari-6) LSTs can be shown as an example dataset of LST. However, use 747 

of geostationary satellites do not completely ensure to avoid data gaps along a day due to the 748 

presence of clouds. Piles et al. (2016) have proposed a technique to improve the spatio-749 

temporal resolution of soil moisture from the synergy of SMOS and Meteosat Second 750 

Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) observations. 751 

SEVIRI is a geostationary orbit optical imaging radiometer on-board the MSG satellite. Soil 752 

moisture retrievals from SMOS with LST and Fractional Vegetation Cover (FVC) products 753 

from the SEVIRI have been employed in this approach. In addition, Djamai et al. (2016) 754 

proposed a method to estimate soil moisture at high resolution on cloudy days, by combining 755 

the Canadian Land Surface Scheme (CLASS) with DisPATCh model. This involves 756 

interpolating the input data of CLASS at high resolution by kriging and subsequent near surface 757 

soil moisture simulation and calibrating the CLASS using the downscaled soil moisture from 758 

DisPATCh model. Another potential way of filling these data gaps caused by the cloud cover 759 

is using the persistent spatial patterns of soil moisture. A number of researchers have studied 760 

the temporal persistence of soil moisture patterns (Vanderlinden et al., 2012; Brocca et al., 761 

2009; Gómez‐Plaza et al., 2000; Cosh et al., 2008). However, the spatial pattern of catchment 762 

soil moisture can be changed based on the factors such as precipitation pattern, seasonal 763 

vegetation dynamics and mean catchment wetness (Famiglietti et al., 2008; Chen et al., 2014). 764 

Therefore, comprehensive studies on time stability of soil moisture is required prior to such 765 

approach.   766 
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The methodology introduced in this study shows a good potential in producing a time series 767 

record of high-resolution soil moisture over arid and semi-arid regions. Future studies should 768 

be directed on further refining the regression algorithms by combining model-derived datasets 769 

and other forcing factors.    770 
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Highlights 

The SMAP and SMOS soil moisture products were compared against in-situ observations.  

Satellite soil moisture products were downscaled using thermal inertia theory. 

A regression tree was developed for downscaling, based on in-situ soil moisture data. 

Downscaled SMAP and SMOS products showed ubRMSEs of 0.07 and 0.05 cm3/cm3.  

Downscaled airborne soil moisture retrievals showed an accuracy of 0.07 cm3/cm3. 
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Fig. 1. The location of the Goulburn River catchment, and the distribution of the monitoring 1 

stations established under the SASMAS project. 2 

 3 

Fig. 2. Soil (a) clay, (b) silt, and (c) sand contents of the top 5 cm soil profile in the Goulburn 4 

River catchment (Source: National Soil and Landscape Grid, Australia).  5 

 6 

Fig. 3. (a) Land use/land cover of Krui and Merriwa River catchments. (Source: The 7 

Department of Environment and Climate Change, NSW). (b) Seasonal average NDVI maps in 8 

2015 of Krui and Merriwa River catchments calculated by using MODIS 16-day NDVI 9 

composites. 10 

 11 

Fig. 4. The temporal variability of vegetation in Krui River catchment SASMAS monitoring 12 

stations as captured by the MODIS 16-day NDVI composites (MYD13A2). 13 

 14 

Fig. 5. The location of (a) NAFE’05 study area, (b) SMAP-Enhanced 9 km, and (c) SMOS 25 15 

km grids over the Goulburn River catchment. The pixels used for validation are marked with 16 

letters (X for SMAP-E and P-S for SMOS).  17 

 18 

Fig. 6. Flow chart of the approach used to validate and downscale the satellite soil moisture 19 

products and to assess the reliability of the downscaled soil moisture products.  20 

 21 

 22 



2 
 

Fig. 7. (a) The regression tree developed for the Austral spring. The ΔT and θμ values were 23 

classified based on the season, soil clay content and the NDVI value as shown in the regression 24 

tree. (b) Regression Models developed for the class of clay< 35% and 0.4< NDVI<0.6 for (i) 25 

Austral summer, and (ii) Austral winter seasons. 26 

 27 

Fig. 8. (a) Land use/land cover, and (b) soil clay content over the NAFE’05 study area. The 28 

dense vegetation belt across the southmost region of the NAFE’05 study area can also be 29 

identified as a divide of soil texture.  30 

 31 

Fig. 9. Comparison of the temporal patterns and agreement between SASMAS in-situ 32 

observations at top 5 cm soil profile and (a) SMAP-E, and (b) SMOS soil moisture products. 33 

The daily precipitation shown in the figure is based on the in-situ observations at SASMAS K3 34 

monitoring station. 35 

 36 

Fig. 10. Comparison and correlation between SMOS and SMAP-E soil moisture products over 37 

Krui and Merriwa River catchments in 2015/16. 38 

 39 

Fig. 11. (a) Temporal variability of soil moisture as captured by the downscaled SMAP-E 9 40 

km, and SMOS 25 km gridded products with respect to SASMAS in-situ data at stations K-3, 41 

M-6, and S-3. (b) The agreement between the downscaled SMAP-E, and SMOS soil moisture 42 

products with SASMAS in-situ data. 43 

 44 
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Fig. 12. The spatial variability of soil moisture as captured by the coarse resolution satellite 45 

soil moisture products and their downscaled counterparts of (a) SMAP-E 9 km, and (c) SMOS 46 

25 km gridded products on 28th June 2015 over the Krui and Merriwa River catchments.  47 

 48 

Fig. 13. (a) Comparison of the downscaled soil moisture products with NAFE’05 airborne 49 

dataset. The downscaled products of the closest date to the NAFE’05 regional airborne data 50 

collection were used in this comparison based on the cloud effect on MODIS LSTs. (b) The 51 

absolute difference between the soil moisture of NAFE’05 airborne dataset and downscaled 52 

products on 7th November, 14th November and 21st November 2005 over the NAFE’05 study 53 

area. Data from 31st October 2005 was excluded in this figure due to high cloud cover. 54 

 55 

Fig. 14. The distribution of NAFE’05 and downscaled soil moisture with the absolute error 56 

between the two datasets over the 40 km × 40 km study area on 7th November, 14th November 57 

and 21st November 2005.  58 

 59 

 60 

 61 

 62 



1 
 

Table 1  

Summary of the datasets used in this study. 

Dataset Data type Data source Spatial 
resolution/ 
grid size 

Temporal 
resolution 

Accuracy Period 
used in 
the study 

SMAP 9 km 
enhanced 
radiometric soil 
moisture products 
(L3SMP-E) 
 

Satellite National 
Snow and Ice 
Data Center 
(NSIDC) 

9 km Daily global 
composites 

0.04 v/v 2015/16 

SMOS 25 km soil 
moisture products 
(CATDS L3 SM 
3-DAY)( Product 
code: 
MIR_CLF33A 
and 
MIR_CLF33D) 
 

Satellite Centre Aval 
de 
Traitement 
des Données 
SMOS 
(CATDS) 
 

25 km Daily global 
composites  

0.04 v/v 2015/16 

MODIS Aqua 
LSTs 
(MYD11A1) 

Satellite Land 
Processes 
Distributed 
Active 
Archive 
Center (LP 
DAAC) 
 

1 km daily ±1 K 
(Wan, 
2008) 

2005, 
2015 

MODIS Aqua 16-
day NDVI 
composites 
(MYD13A2) 

Satellite Land 
Processes 
Distributed 
Active 
Archive 
Center (LP 
DAAC) 
 

1 km 16-day ±0.020  2003-
2015 

The National 
Airborne Field 
Experiment 2005 
(NAFE'05) soil 
moisture data 
 

Airborne http://www.n
afe.monash.e
du/ 

1 km Four 
consecutive 
Mondays 

0.04-0.05 
v/v (Gao 
et al., 
2018) 

31st Oct, 
7th Nov, 
14th Nov 
and 21st 
Nov 
2015. 

SASMAS in-situ 
data (0-5 cm soil 
profile) 
i. soil moisture 
ii. soil 
temperature  

In-situ http://www.e
ng.newcastle.
edu.au/sasma
s/SASMAS/s
asmas.htm 

Point scale 20-min ±0.01 - 
±0.03 v/v 
for fine 
textured 
soils  
± 0.3°C   
 

2003-
2015 

National Soil and 
Landscape Grid 
(Soil Grid) 
i. clay content 

Modelled  Commonwea
lth Scientific 
and 
Industrial 
Research 
Organisation 
(CSIRO) 

90 m - - - 
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Table 2 

The land cover and soil texture of the SASMAS monitoring stations in Krui and Merriwa 

River catchments (modified from Kunkel et al., 2016). 

Station Land cover Soil type Clay% Silt% Sand% 
K1 Crop/fallow Loam 23 32 45 
K2 Native pasture Loamy sand 12 14 75 
K3 Crop/fallow Clay 71 16 13 
K4 Native pasture Clay 55 30 15 
K5 Native pasture Clay 64 20 16 
K6 Improved Pasture Clay loam 38 40 22 
M1 Native pasture Sandy loam 7 11 83 
M2 Native pasture Sand 0 0 100 
M3 Native pasture Clay loam 40 34 26 
M4 Native pasture Loam 29 41 30 
M5 Native pasture Clay 73 20 7 
M6 Native pasture Clay 72 20 8 
M7 Improved Pasture Clay loam 41 32 26 
S1 Improved Pasture Clay 55 35 10 
S2 Native pasture Clay loam 43 27 30 
S3 Native pasture Clay    
S4 Native pasture Clay    
S5 Native pasture Clay 47 34 19 
S6 Native pasture Clay 53 28 19 
S7 Native pasture Silt loam 19 41 40 
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Table 3 

Locations of the centroid of pixels used in the data validation process.  

Dataset Pixel Longitude Latitude 

SMAP-E 9 km grid X 150̊ 15´ 52″ E 31̊  59´ 50″ S 

SMOS 25 km grid P 150̊  2´ 36″ E 31̊  53´ 27″ S 

SMOS 25 km grid Q 150̊ 18´ 09″ E 31̊  53´ 27″ S 

SMOS 25 km grid R 150̊  02´ 36″ E 32̊  07´ 17″ S 

SMOS 25 km grid S 150̊ 18´ 09″ E 32̊  07´ 17″ S 
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Table 4 

Agreement between SASMAS in-situ data and downscaled satellite soil moisture data at monitoring stations K3, M6 and S3. 

Downscaled 
product 

SASMAS monitoring station 

K-3 M-6 S-3 

ubRMSE 

(cm3/cm3 

R2 ubRMSE 

(cm3/cm3 

R2 ubRMSE 

(cm3/cm3 

R2 

D/s SMAP-E 0.066 0.44 0.074 0.36 0.063 0.40 

D/s SMOS 0.044 0.72 0.054 0.59 0.055 0.53 
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Table 5 

Weekly precipitation data recorded at the SASMAS monitoring stations during the period of 
NAFE’05 regional airborne campaign.  

Week 
 

Precipitation (mm) 
Krui River 
catchment 

Merriwa River  
catchment 

S2 K4 M1 M3 M4 M5 
25 Oct - 31 Oct 17.0 18.2 22.0 11.8 19.0 16.6 
1 Nov - 7 Nov 14.4 18.2 12.4 23.2 23.2 35.4 
8 Nov - 14 Nov 11.0 8.4 1.4 5.0 11.2 8.8 
15 Nov - 21 Nov 0 0 0.2 0 0 0 
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